The collapse of the sarcoplasmic reticulum in skeletal muscle.

نویسندگان

  • J R Sommer
  • N R Wallace
  • W Hasselbach
چکیده

When various cations, including Ca2+, are in the fixative, both sarcoplasmic reticulum (SR) of whole skeletal muscle and isolated SR vesicles collapse to form pentalaminate "compound membranes" that result from the apparent fusion of the lumenal lamellae of the membranous envelope of the SR. The process may be reversed by subsequently soaking the tissue in 1 M NaCl. An identical morphological phenomenon is observed in unfixed quickly frozen isolated frog skeletal muscle fibers, the cation in that case coming from endogenous sources. The hypothesis is advanced that the collapse is an in vivo process mediated by the sequestration of Ca2+ after contraction. The resulting obliteration of the SR lumen would have the effect of displacing the SR contents into the junctional SR, as well as electrically isolating the free SR from the junctional SR during relaxation. As a consequence, resistive coupling between the plasmalemma and the junctional SR becomes a plausible mechanism for the translation of the action potential into Ca2+ release, since the bulk of the SR membrane capacitance would now remain separated from the plasmalemma during relaxation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Smooth muscle expresses a cardiac/slow muscle isoform of the Ca2+-transport ATPase in its endoplasmic reticulum.

Smooth muscle expresses in its endoplasmic reticulum an isoform of the Ca2+-transport ATPase that is very similar to or identical with that of the cardiac-muscle/slow-twitch skeletal-muscle form. However, this enzyme differs from that found in fast-twitch skeletal muscle. This conclusion is based on two independent sets of observations, namely immunological observations and phosphorylation expe...

متن کامل

The Effect of Quinidine on Calcium Accumulation by Isolated Sarcoplasmic Reticulum of Skeletal and Cardiac Muscle

Quinidine potentiates twitch tension and (at higher concentrations) causes contracture of skeletal muscle whereas the same drug reduces tension development of cardiac muscle. To gain insight into the possible differences in the excitation-contraction coupling mechanism of the two types of muscle the effect of quinidine on calcium accumulation by isolated sarcoplasmic reticulum from skeletal and...

متن کامل

FK506 (tacrolimus) increases halothane-induced Ca2+ release from skeletal muscle sarcoplasmic reticulum.

BACKGROUND FK506 binding protein is closely associated with the sarcoplasmic reticulum ryanodine receptor-channel and can modulate its function. The ryanodine receptor is stabilized by its association with FK506 binding protein. The immunosuppressant drugs FK506 (tacrolimus) and rapamycin can promote dissociation of FK506 binding protein from the ryanodine receptor 1 and by this mechanism incre...

متن کامل

Polymorphism of sarcoplasmic-reticulum adenosine triphosphatase of rabbit skeletal muscle.

Antibody was raised in chickens against purified sarcoplasmic-reticulum Ca2+-activated ATPase (Ca2+-ATPase). The immunological relationship between the Ca2+-ATPase of fast-muscle and slow-muscle sarcoplasmic reticulum was investigated by a one-step and a two-step competitive enzyme-linked immunosorbent assay (ELISA). The results show marked antigenic differences between the membrane-bound Ca2+-...

متن کامل

Rapid communication: mapping of the Ca2+ ATPase of fast twitch 1 skeletal muscle sarcoplasmic reticulum (ATP2A1) gene to porcine chromosome 3.

Rapid communication: Mapping of the Ca 2+ ATPase of fast twitch 1 skeletal muscle sarcoplasmic reticulum (ATP2A1) gene to porcine chromosome 3" (2002).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Zeitschrift fur Naturforschung. Section C, Biosciences

دوره 33 7-8  شماره 

صفحات  -

تاریخ انتشار 1978